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Linear Multistep Methods for Stable Differential 
Equationsy- Ay + B(t)y +c(t) 

By Eckart Gekeler 

Abstract. The approximation of y = Ay + B(t)y +c(t) by linear multistep methods is 
studied. It is supposed that the matrix A is real symmetric and negative semidefinite, that the 
multistep method has an interval of absolute stability [-s, 0], and that h2 11 A 11 s s where h is 
the time step. A priori error bounds are derived which show that the exponential multiplica- 
tion factor is of the form exp{'s III BjIII(nh)}, III B II n=maXo?t-,nh 11 B(t)jj. 

1. Introduction. In this work we consider the real initial value problem 

(1) y - Ay + B(t)y- +c(t), t > 0,y(O) = z0,y (0) = z, 

where A is a symmetric and negative semidefinite matrix. Very similar problems are 
obtained in two ways: 

If a linear hyperbolic initial boundary value problem with damping is discretized 
in the space direction by a finite element method or, more generally, by a Galerkin 
procedure, then the resulting semidiscrete system has the form 

(2) My = -Ky + C(t)y -+f(t); 

see, e.g., Fried [16, Chapter 9]. M is a constant matrix and K is a constant matrix if 
the elliptic operator in the partial differential equation does not depend on time t. 

In engineering mechanics systems of the same form are obtained in a different 
way by the finite element approach of linear dynamic problems in matrix structural 
analysis; see, e.g., Bathe and Wilson [8, Chapters 3, 8] and Przemieniecki [28, 
Chapters 10, 12, 13]. M, C, and K are then the mass, damping, and stiffness matrix, 
and f is the external load vector. 

M and in many cases also K are real symmetric and positive definite matrices but 
K is in general very ill-conditioned. 

Several methods were proposed for the solution of initial value problems with the 
system (2). Sometimes the mass matrix M is diagonalized a priori by 'lumping' (cf., 
e.g., Fried [16, Chapter 3], Strang and Fix [29, Chapter 6]) or Jordan canonical 
decomposition (modal analysis) (cf., e.g., Bathe and Wilson [8, Chapter 8]). Argyris 
et al. [2], [3], [4] transform the second order system (2) into a first order system of 
twice as large dimension by introducing y as a further variable. The matrix of this 
system is no longer symmetric. Hence the transformed problem is solved by a special 
class of absolutely stable single-step multiderivative methods which are known as 
Obrechkoff methods; see, e.g., Lambert [26, Chapter 7]. For an error analysis of 
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these procedures we refer to Gekeler and Johnsen [18]. Runge-Kutta-Nystrom 
methods for systems (2) without damping are studied, e.g., by Fried [16, Chapter 9] 
and Gekeler [19]. Further one- or two-step multistage methods are used by Baker 
and Bramble [7] and Baker et al. [6] for the solution of systems (2) obtained by 
Galerkin procedures and hyperbolic problems. 

Special linear two- and three-step methods were applied by Bathe and Wilson [8, 
Chapters 8, 9] in matrix structural analysis and by Baker [5], Dendy [13], Dupont 
[15], and Wheeler [30] in connection with the numerical solution of hyperbolic 
problems. Error estimations of Galerkin multistep procedures of arbitrary order and 
hyperbolic problems were deduced by Dougalis [14] and Gekeler [17], [21]. However, 
besides Bathe and Wilson [8], systems (2) without damping are considered in the 
quoted literature on linear multistep methods and Dendy [ 13] only admits a 
time-varying stiffness matrix K. 

In the present paper we make no specific assumptions on the damping matrix 
B(t). But with respect to (2) we tacitly assume that C(t) has the same shape as the 
mass matrix M (cf. [28, Section 13.10]). Finite element systems with a damping 
matrix proportional to K or having the form aM + /3K are considered in [8, 
Chapters 3, 8] and [28, Section 13.11], too. However, in this case nonlinear implicit 
methods seem to be more suitable than linear multistep methods. 

In order to introduce linear multistep methods let 
k k 

p( ) E aK, ak > ?, I g (M = E #x Pk : >_ 0 

be two real polynomials without common roots including zero, and assume that for 
every coefficient P.K # 0 of a(g) a further real polynomial is given, 

k 

TK ( =zYy 

11=0 

Let h be a small increment of time t, yn = y(nh), and let the translation operator e 

be defined by (ey)(t) = y(t + h). Then a linear k-step method <p, a, T) for the 
system (2) is defined by 

k 

(3) Mp(E))vn + h2Ka(E))vn = h E jKCn+KTK(E)vfn + h2n(e)f, n = 0, 1,.... 
K-0 

For the error estimation we multiply (3) from left by M-l/2 and replace MI/2vn by 
vn again. Then 

k 

(4) p(e))vn = h2Aa(e))vn + h E PKBn+KTK(E))vn + h2a(e)Cn, n = 0, 1,..., 
K=O 

where A =-M -2KM-'72 etc. The scheme (4) is a linear multistep method 

(p , T,) for the explicit problem (1) and the transformation of (3) has the additional 
effect that estimations of M'72vn are derived which are desired in finite element 
analysis [14], [21], [29]. 

The method needs a special start procedure for the computation of the initial 
values v0, . . ., Vk- 1 In the sequel we always suppose that these vectors are given. For 
their computation, the special class of A-stable single step methods of Obrechkoff 
type considered in [ 18] may be recommended. 
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The truncation errors of <p , T,) are 

d<po>(h, w)(t) -p(e9)w(t) - h2a(e)w (t) 

and 

d<7T>(h, w)(t) - TK.(E)w(t) - hE)Kw((t). 

Definition 1. The method <p , T) is consistent if there exists a positive integer q 
called the order of <p , T,) such that for all w E Cq+2(R; Rm), 

ll d<p ,>(h, w)(t)ll Xh q+2 d<T.>(h, w)(t)II XK 
I 

where X and XK do not depend on h. 
By [26, pp. 30, 254] a method <p , T,) is consistent if and only if 

(5) p(l) = p'(l) = O, p"(l) = 2a(1) 

and 

(6) TK(=) 0, <(1) = 1 for allIT . 

Now let C be the complex plane extended by the point oo in the usual way. The 
characteristic polynomial of the method <p , T,) is then 

7G(, )-0 pMD - na(0), C C, 7(D, m)-aD 

Definition 2. The stability region S of the method <p , T,) consists of those -q E C 
for which all roots K('q) of 7(D, q) satisfy I IJ-q) 1 I and all roots of modulus one 
have multiplicity not greater than two. 

It follows by continuity that S is closed in C if at most double roots of modulus 
one lie on the boundary of S. 

Definition 3. The method <p , T,) is strongly D-stable in [-s, 0] C S if 
(i) all roots DK(O) 1 of modulus one of 7(D, 0) = p(D) are simple roots of 7(D, 0), 
(ii) all roots of modulus one of 7(D, -q) are simple roots of (D, -q) for 'q c [-s, 0). 
The roots DK(Jq) of 7(t, -q) are the branches of the algebraic variety D(-q) defined by 

qT(D'('), 'q) 0. This algebraic variety has the unique finite pole in q =ak/13k > 0 if 
Pk # 0, which cannot lie in S. By (5) there are exactly two branches, g'('q) and t('), 
which coalesce to the value one for q = 0 if the method is consistent. Below we need 
the polynomial 

(7) 7Tl(G, a1) = 7T(t, a1/ Mt-0ta)) 

Independently of possible real branching points of '(-q) this polynomial can be 
chosen on the entire real axis, with exception of -q a=k/l3k, as a fixed polynomial of 
degree k - 1 in D with coefficients that are continuous in -q. 

Let 11 x II be the Euclid norm of x C cm, let 11 A I1 = maxXi0 1Ax1/11 xi1 be the 
associated matrix norm (spectral norm), and let III B Ill n = maxo,,,nh 11 B(t)JI. It is the 
goal of the present paper to prove the following theorem: 
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THEOREM. (i) Let the (m, m)-matrix A in (1) be real symmetric and negative 

semidefinite. Let the solution y of (1) be (q + 2)-times continuously differentiable. 
(ii) Let the method <p , T,) be consistent of order q with the stability region S, and 

let it be strongly D-stable in [-s, 0] C S, s > 0. 
(iii) Let h2 1 AI s. 
(iv) Let hiIIBiii I Q where the constant Q is defined in (14). 

Then the error en = Yn- vn, n = k, k + 1,..., satisfies 

k-2 

11en 11 I I ej1 + Fsnh exp {rFs* I B III nnh} 
K =o 

k-2 k-I 

X A 1| l/2 E || e| + h' 11eK -eK1 
K = 0 K = 

+ hqnh (I y(q+ 2)(T)II + ii Blllnl y(q+1)( T)II) dT 

Remarks. (i) 17, and 1* depend only on the data of the method <p, a, T) if s = oo. 

For instance, we have s = oo in the implicit 3-step method of order q = 2 with the 

polynomial 

qt, 'q) = 2D3 - 5t2 + 4t - 1 - _3 

However, Dahlquist [12] has proved that s < oo if q > 2. 
(ii) If the method <p , T,) is strongly D-stable in q = 0 and has a stability region 

S containing a left-side neighborhood of q = 0, then it has a stability interval [-s, 0] 
satisfying assumption (ii) because the algebraic variety '(q) has only a finite number 

of branching points where some roots ',,(q) of (, 'q) coalesce. 
(iii) 1 'q) can be considered as the characteristic polynomial of a not necessarily 

consistent linear multistep method for a differential equation of first order. Assump- 

tion (ii) then is the weakest condition such that g,(q) # f,(q) for 'q E [ -s, 0) and 

that the numerical approximation of y = Ay, X < 0, defined by 71 (0, hX)vn = 0, 

n = 0, 1, . . ., remains bounded in modulus for arbitrary but fixed h X E [- s, 0]. 
(iv) Of course, the differential system (1) can be transformed into a first order 

system of twice as large dimension and then be approximated by linear multistep 

methods. However, the matrix of this system is diagonalizable only under very 

restrictive assumptions on the damping matrix B(t); see, e.g., [22]. 
(v) The initial error is multiplied by 11 A 111/2 in the above result. This phenomenon 

was already observed by Dupont [15] for two-step methods. The difference quotient 

of the initial error corresponds to the initial condition y (O) = z1 in the analytic 

initial value problem (1). 
(vi) Of course, the estimates are only reasonable if III B II1 n is uniformly bounded or 

if the time interval is bounded. 

2. Auxiliary Results. In the sequel F denotes a generic positive constant depending 

only on the data of the method <p , T,) and not necessarily the same in two 

different contexts. Further dependencies are indicated by subscripts. 
The following lemma is a slight modification of a result due to Dahlquist [11, 

Chapter 4]; see also Lambert [26, Section 3.3]. 
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LEMMA 1. If a linear k-step method (p , ,T) for the problem (1) is consistent of 
order q, then the composite truncation error 

k 

d<P,G,T)(h, w)(t) _ d<p o)(h, w)(t) - h , /,KB(t + Kh)d<7 )(h, w)(t ) 
K=O 

satisfies, for all w E Cql2(R; Rm), 

Ild (h, w)(t)II Fh q+1 t+kh (I W(q+2)(T)lj + ? iBii, 1 W(q+?l)(T)II) dT. 

The next estimation concerns the principal root ,1(-q) of (D, 'q). 

LEMMA 2. Let assumption (ii) be fulfilled, and let q E [-s, 0]. Then 
(i)ll1 -'1('q)lF_I q 1/2, 
(ii) lim"o I G (q() - WG(q(a) - MO) |I< cc? 

Proof. By Ahlfors [1, p. 226] we can write ,1(-q) in a neighborhood of the 
branching point q = 0 as a convergent series in powers of q'2. Consequently 

(8) ,J(q) = I + X,i I -q 11/2 (I +,O(i Jq 1 1/2)) 

where X,2 = 2a(l)/p"(I) = 1. XL 1 is the growth parameter of t'1(q) depending 
on the branch chosen for t,; and 4 is a holomorphic function in a neighborhood of 
zero with 4(O) = 0. But 4('q71/2) = [((')- 1)/'q'/2] - 1 is then bounded in [-s, O] 
because I 1(q) 1 in this interval. Hence the first assertion follows with F 

sup_s-7O-0 1 ?+ (q"1/2) 1 < Do. The second assertion follows from (8). 
Now let F(q) be the Frobenius matrix associated with the reduced polynomial 

| 'q) = 0KCq) " defined in (7), 

01 

0 
F(q1) 0 0 1 

62O0( TW)/0k-1 ( Tq) -0k-2 ( W )/k-1 ( Tq) 

In the following lemmas spr(A) denotes the spectral radius of the matrix A, and we 
write A ? B for two hermitean matrices if and only if B - A is positive semidefinite. 

LEMMA 3. Let assumption (ii) be fulfilled. Then 

sup sup IIF(_)n||<oo. 
-s<??O0 neN 

Proof. For q E [-s, 0] the polynomial (t, 'q) has in a neighborhood of q = 0 the 
simple root ,(-q) with lim710 I I%(-) I= oo but depending continously on -q. By 
assumption all roots DK(,q) of (t, 'q) satisfy I DK(-) 1I 1, and all unimodular roots of 

T(t, -q) are simple roots of ,(t, -q) for q E [-s,0]. Therefore Lemma 2 of [20] 
applies literally to F(q). 

Lemma 3 was proved in a different way by Crouzeix and Raviart [10, Theorem 
8.1]; see also Crouzeix [9] and LeRoux [27]. The proof in [10] does not depend on the 
special form of the Frobenius matrix F and needs only continuity with respect to the 
argument ,. 



486 ECKART GEKELER 

We now quote the well-known Matrix Theorem of Kreiss [25] in a somewhat 
simplified form using a modification of Widlund [31]. 

LEMMA 4 (KREISS). If the assertion of Lemma 3 is true, then there exists to every 
matrix F(q) a hermitean matrix H(q) and a constant FS such that 

F(rq)HH(rq)F(rq) ? (1 + spr(F(rq)))H(rq)/2, 0 < Fs-'I ? H(q) F sI. 

Now let be the finite set of the branching points of ,1(q) in [-s, 0), i.e., the set 
of q E [-s, 0) where ,1(q) coincides with some other branch ,('q) of the algebraic 
variety t(q). Then I t1() 1< 1 Vq & by assumption (ii) and Definition 3(ii), and, 
by continuity of ,1(q) for q #? ak/l3k, there is a closed set Q* which is the 
intersection of an open neighborhood of and [-s, 0] such that <(q)< 1 

Vq & Q*. We write 

= [-s,0O] \Q* 
and prove the following auxiliary result. 

LEMMA 5. Let assumption (ii) be fulfilled, and let 

Z(-q) = (-q(T)I -F(-q)) -(I -F(-q)), 0 -q rB E , Z(O) = I. 
Then 

sup IIZ(Qq)II < c?. 

Proof. (tj (-q)I - F(q))' is continuous in Q \ {0} by Kato [24, Theorem 2.1.5] 
since no eigenvalues of F(q) coincide with ,1(q) in this set by definition of Q. Hence 
we must show that Z(q) is bounded in a neighborhood of q = 0. Let U(q) be a 
unitary matrix such that 

R('q) {r11(q)}k11 U(,q)F(-q)U(-q)H 

is an upper triangular matrix with r, 1() =,(q). Then we have, near q = 0, 

I r,, (q) I<I 1R (q1) I = I IF(q1)l < 1r- 

Let e = (1, O,. , O)T be a column vector, and let 

Z*(-q) = (&1(q)I - R( -))(I- ()eeT)e 

We obtain 

U(q)Z(q)U(q) -I - (1 - - 

= (1 - -&))(I- l(q)eeT)-'Z*(q) 

and 11(1 - -1())(I - (q)eeT)-lI is bounded near -q = 0. In order to prove that 
1I Z*(q)- ' Il is bounded, we omit the argument -q and write for this upper triangular 
matrix 

Z* = diag(Z*) + R* = diag(Z*)(I + diag(Z*) R*), 

where diag(Z*) is the diagonal of Z*. Then (R*)k 0 O, IIR* = II R - diag(R)II is 
bounded, and Ildiag(Z*)-l Il is bounded by (5), Lemma 2(ii), and Definition 3 near 
0n = . Thus a von Neumann series expansion of Z*-1' proves the assertion. 



MULTISTEP METHODS FOR STABLE DIFFERENTIAL EQUATIONS 487 

LEMMA 6. Let assumption (ii) be fulfilled, and let 

G( )- [ F(ql)O] 
Then 

sup sup 11G( 
)n 

11 < oo. 
-s<?i<0 nEN 

Proof. We obtain 

- ~~1Qq)~~I)z(nj ) 
fi( ( 1) -t (7 )n Z 7 )D( 1 nI| ] [-s,EO],E 

and we have by assumption and Lemma 3 

sup sup (IIF(n)"H ? 1 ? rq. 
-s<z?<0 n EN 

Therefore we obtain by Lemma 5 

sup sup (F(-q) n( ? F I ZOO nI)Z <c cc 
'qESQ nEN 

Now, Q* is a closed set and I I< 1 V - Q* by definition; hence, for -j E Q*, 

- 1( 
- 

- I) 11 F(71) -1 r/) )Z(71 1 = EF( r1)t 1)n ( F(-1)- I) 

j0 

FS I I - I ,(71) 1)-' Fsr*. 
J = 0 

This proves the assertion because [-s, 0] = Q U W. 

COROLLARY 1. Under the assumptions of the Theorem there exists to every matrix 
G(h2A) a norm 11 * 1I G such that 

1I G(h2A) 1I G 1, IIGIIG = max IIGWIIG/IIWIIG 

Fs- 1/2 11 WI W 11 G -< rs'12 11W 1, VW E C2X(k-I)Xm. 

Proof. Let A = XAXT, XTX I, be the Jordan canonical decomposition of the 
matrix A. Then we observe that 

IIG(h2A)nII IIG(h2A)I A sup IlG( )n I, n E N. 

Hence, by Lemma 6 and Lemma 4, there exists to every matrix G(h2A) a Kreiss 
matrix HG(h2A) with the property 

IIHG(h2A)I/2G(h2A)HG(h2A) 1/2 
I 

S 1 

because spr(G(h2A)) < 1 for h2 21 A s ? s. The norm 11 W 11 G-11 HG(h2A)1/2W Il then 
has the desired properties. 
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3. Proof of the Theorem. The error en = yn-vn of the method <p, a, ) for the 
problem (1) satisfies 

7T(e, h2A)en = ffj(0 h2A)(e-O (h2A))en 
(9) k 

= h 2 PKBn+?KK(T)en + d<p,U,T)(h, y)n, n 1,2 
K=O 

By (6) all polynomials TK(t) of a consistent method have the root ' 1. We write 
k-I 

tt=0 

and introduce the vectors of block dimension k - 1 

(n = n-k+2 ... 5en) 
T 

Dn = (O,. . . ,0, (akI - fkh2A) d<p,aT) (h5 Y)n-k) 

Then Eq. (9) is equivalent to the two-step scheme 

En - 1(h2A)En_1 = F(h2A)(En_I - l(h2A)En-) 

(10) + hPn(En- En- 1) + hQn(EnI - En-2) + Dn 

n = k, k + 1,.... 

Here Pn and Qn are matrices of which only the last rows are nonzero and are chosen 
such that 

last element of Pn(En - En-,) + Qn(En- I-En-2) 
k k-I 

(akl - Ikh2A) 2 PKBn-k+K 
2 

8K)(en-k+,,+l - en-k+,u) 
K=O =0 

Hence there exists a constant F, such that 

(I11) III P III n + III Q III n IF, III B III n- 

We now write briefly ' for d,(h2A), F for F(h2A), and G for G(h2A). A substitution 
of 

(12) E, - En- I = (En - IEn )1) - (EnI - ME-2) + O(En- I -En-2) 

into (10) and a substitution of (10) into (12) yields 

(13) Wn = (I- hPn) 'GWn-I + hLnW_ n n = 1,2, . 

where 

Wn(En-?;En lnEn-l (I - hPn) -(Dn 5DjT 
and 

L=(I - hP)1[- P Qn + ] 

Supposing that 
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we obtain by Corollary 1 

II WnJIItG < (1 + sTIhIII B III n + TshtILLn )tWn-JltIG + IIDn*lG, n k, k + 1 

But II Ln IF FIIIB BIIIn, hence 

(15) tEn -En- I Fsexp{Fs* IIIBIIIn(nh)})LJWk J7I + k ] 

Finally, we observe that 

||Wk-I 1l < ?Ek-I - Ek-2 1t + 11 Ek I - Ek-2 

2IEk-1 - Ek-211 + 11(tPA-I)Ek-2 I, 

therefore we have by Lemma 2 

1 Wk- I 11 S J(II EkI - Ek-2 1 + h 11 A 111/2 11 Ek-2 ii) 

A substitution of this bound into (15) yields 

iEn,i < l IEk-211 + nTsexp{T's*IIIBIIIn(nh)} 
n 

X 11[Ek-I - Ek-2 11 + h 11 A 111/2 II Ek-211 + I II d<p,T) (h, y)v-k 
v=k 

and a substitution of the result of Lemma 1 into this estimation proves the Theorem. 
The author thanks the referee for some very valuable suggestions and remarks. 
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